stack. Further iterations can be obtained by NSTP. FF2 can be used for finding
fu;ther solutions for the same equation from the same or different starting
values. .)

Input Command Output

Level 4 ‘Level 3 Level 2~ level 1 .= > Level 2 devel 1 - .o.0%
0 1 1 f2%Y+X+17 . CFF1 11.6808481406 11.6808481721
NSTP 11.6808481731
0 1) FF2 2.94469662483 2.9446966249

Jeremy Hawdon (#600)

REF : A Structured Introduction to Numerical Mathematics by P.J. Hartley
and A.Wynn-Evans

Il HP43S or 1P43SK ?

David Hodges (#347) and Peter Embrey (#628)

In his recent article in DATAFILE [1], Simon Bradshaw criticised HP's decision to
compromise on "adaptability" rather than "functionality” in the HP48S. He also invited
comments.

Despite our reputation as "Forty-Eight Bashers" and, some would say, over zealous
critics of its keyboard and menu layout [2], we belong to an exclusive group within
HPCC, being proud owners of both the HP48SX and the HP48S. We have come to
appreciate the virtues of the S; it is lighter in weight and much cheaper than the SX, and
sharper in responding to keystrokes, yet it provides identical computing power. For
virtually the same price as the HP28S, the 48S offers more potential and two /O modes.

We believe that the idea of producing an "HP48X" from existing SX hardware, with card
slots but fewer functions, is unrealistic. ROM development on a machine such as the
HP48 is exceedingly expensive, and once complete it pays to standardise. A loss of
functionality, far from creating a cheaper caiculator, would require an expensive re-write
of the firmware. It may be possible to simplify the calculator by suppressing certain
menus, which would no doubt please the syseval lovers among us, but this would only
decrease capability without reducing costs; hardly a recipe for success.

We like the HP48S. For once, we think HP has made the right decision.
REFERENCES

{1 Bradshaw, S; "Functionality vc Adaptability, or Swiss Army Calculators and
Socket Set Handhelds”; DATAFILE V1ON7P6 (1991).

[2] Embrey, P and Hodges, D; "A Better Keyboard for the HP48"; DATAFILE
V10N3P3 (1991).

Page 26 DATAFILE V1IN3

|

Craig A. Finseth (#745)

(This is article number two of a -- Datafile editor willing -- series
of four.)

ThekCo]1ect—94 development system was created between March and October in 1986.
It was written in the C language on an IBM PC-compatible computer. The bulk of
the programming was done by one person. :

If you were to compare the above dates and the HP-94’s introduction date, you
would notice that work on the development system had started two months before a
unit was available. MWe were able to get this "head start" for two reasons:

First, even though a-unit wasn’t available to us, we knew:

- that the CPU was an 8086-compatible,

- that there would be at least 64 KBytes of memory,
- that there was some form of serial I/0, and

- the screen was 4 x 20.

Second,‘we knew who - we were trying to sell to and what would befimpbrtant to
them. .

We were thus able to design the overall system and start prototyping
applications using readily-available tools.

THE GOALS

We were evangelists: we wanted to make it possible for anyone to create a.high—
quality, easy-to-use data collection system. We looked at numerous existing
systems: Smalltalk, the Macintosh system, other handhelds (inciuding HP of
course), many versions of the Basic Janguage, and general user interface design
criteria. “We wanted to create something that:

1) was immediately familiar to people,

2) aliowed them to create flashy programs with littie work (this alse
allowed *us* to create flashy demo programs with Tittle work...),

3) fit within their existing data processing environment,

4) was easy to implement and support.

A TYPICAL CUSTOMER

We judged that a typical customer would be a corporation’s data processing
department. As part of an overall switch to computer-tracked 1nven§ory or
transactions, they would select a bar code system, code their applications to
process the data on a mini- or mainframe computer, and expect the data collector
to fit within the system.

They would alsc handle programming of the data collector: the people in the
field would not be expected to do anything other than data entry.

DATAFILE V11N3 Page 27

The customer would have either IBM PCs (or compatible) or HP-150 computersithéi

could be used for: development.

We also expected two other types of customers: VARs and OEMs. In this market,
we_expected them to have needs similar to the corporation buying for its own
usel’ el g : SO L S et

THE OVERALL SYSTEM

The development system consisted of these pieces: compiler, interpreter,
testbed, decompiler, question-and-answer program, and assorted utilities.

We selected a compiler-based approach because we felt that the customer would
rather program on an IBM PC-type computer than the handheld itself. We could
thus save the memory in the handheld that would otherwise be required to handle
the program-development side of things. o : ‘ RIS

We also felt that the data procéssing customer would be used to a compiler-based
environment and the abiiity to add comments, whitespace, use long variable
names, and othér such features all without an execution-time penalty.’ :

This ‘decision turned out to be a good one for several reasons. . These reasons.
will be mentioned throughout the rest of this article:

THE COMPILER

This program did the obvious: it accepted a program source file and output an

object file. The object file had been thoroughly cross-checked for syntactic

validity 'so ‘the interpréter ~did"‘not ~have "to (one ‘of the aforementioned.
benefits). The object format was custom and had three main paris:

"Lz header
. -.a declarations area
- the program itself

The program was stored in a compact, tokenized form. - A1T Jjumps (including
implied jumps due to if-statements, etc.) had their target locations resolved. L

The interpreter required that its expressions be in RPN. ~The compiler could-:
accept both RPN and -algebraic expression formats *(if RPN, the .expression was.
enclosed in @8 ... 8). As it turned out, the algebraic parser was almost the

tast piece of code written: all of the demos were coded directly in RPN.. The

first algebraic parser worked almost perfectly: it could handle just about any

expression that you could throw at it. However, it failed to parse-a test

expression that looked something Tike this: : : ! ‘

((CC((((a+1)))+2))*4))

j.e., excessively-nested parentheses. Eventually, the who]e'parser was thrown
out and another one written. This one was based on the Lisp language where it
first turned the expression into a CONS-tree, and then did the compilation.

Worked perfectly.

The algebraic parser did show one sign of its RPM history. A fragment
such as:

max(3, -4)

would be treated as "max(3-4)" or "max(-1)" which i
Wou'd be treated a 3¢ 2.9 X thich is, of course, a syntax
as" the-max functyqqiregu1resftwo operands.,.Ydu‘hdd,to”pkbgram'aroagd thfzrg;

d either:

Ciax (<4, 3)
ar

max(3, ()

hings, this would have been

P Tt

I erpreted the dse}}%gbraéraﬁj Tt pretty-much took over the whole
¢ REL A coel bt R i LY lidL 00K .0ver..Lhe WhOl

g ? Lime we W?FG;QQ"97 the ofily thing that we use the Roﬁ-bzgéd,éodg
the file system and, if we had continued, that would have been replaced

: 2
or wa

as waTio :

Early on, we noticed that the display hardwarebwas é i
o e e NOLICEC that the display hardware was capable of .smooth verfical
gﬁzo{flzg.é, ited to take advantage of that feature and proceeded“to'ﬂéy.jt

ut. at “the” dispYay would start scrolli j ck. Aft
fighting with it for a while, we gave up. otling, then ?uwpqp?c&i;Aftgt

A few months Tater we had. to, replace the timer-interrupt-code 50 -Lhi
:;e the ‘wind”* port (we ‘Were writing a software ﬂART)[P This Ehahéﬁathguﬁggl%
hat we had to replace. the keyboard handier . and : several. other pieces of
software,, because the ‘e ing ‘interrupt handler .could mot be partially -veplaced
(;t was in ROM). -Buried deep in the timer interrupt was a gratuitous reset of
thggq4§p]3yg§gr911;qupeglstggﬁ,:Agwwi;h,many,ntuer features, . if development had
continued we woild have added the swiooth scrolling feature. . =~

THE TESJBED -

R

Only a small fraction of the interpreter Was;written in assembier

written in C. Of that code, only a small fraction was/specific'tghghgeag—gzs
ﬁy replacing only that fraction of code, we were able to run the samé
interpreter on the. IBM PC or compatible or HP-150 development system. Virtually
al]i‘fgggurg§ operated, the same.. The programmer could thus rapidly test, new
versions of their program. In addition, the testbed took advantage of the larger
scréen and keyboard available on the desktop machine. The programmer could use: -
gggp:ﬁg:Sed system to examine variables, display trace data, and save datafile

If we had not been compiler-based, our testbed s
, ystem would not have be
‘c?osg ﬁo“gg%ﬁggifa]?gata cq]] on sofiware. This closeness allowed 32 :g
“once Fixed would stay fixed, ” w11 anount. of per-platfom
codgﬂmade it eg -?oréqsﬂto?gg?3§toh{ tih “yﬂéfgéﬁirq@mgﬁt tjbther platforms.

THE DECOMPILER -

wé;guaranteed t d

hat source code woul
thu b

~10.-change .(presumabl,

‘ ake S “approach work, we- had to p]an'%bf the ‘case Whéke‘som‘ ¢ 'had
‘workifig program but had Tost ‘the source ‘ ot wp Ter, ‘which
g progean 1 code. We thus wrote a decompiler, whlgh

Page 28 DATAFILE V1iIN3

This was a valuable development tool as well. With it, all language changes. had
to be made in two places (the compiler and decompiler). We thus had both a means
of testing their implementations and confidence that they were implemented
properly. {Object format changes were made in three places: the compiler, the
interpreter/testbed, and the decompiler.)

THE QUESTION-AND-ANSWER PROGRAM
One of the HP-94’s major markets was data collection, typically either counting
static inventory or recording transactions. Most of these applications are

pretty much the same, with just the names of what is being counted and the
acceptable values changing from one to the next. .

We took advantage of this commonality and wrote a question-and-answer program.
This program asked for the names, value ranges, and data storage formats and
wrote the program to do the collection. It was our goal that 2/3 of all

programs could be completely written using just this method and, in hmdS\ght,
it appears that we could have met this goal.

Of the other 1/3 of all applications, many could benefit from being started with
the question-and-answer program and would only requn'e minor tailering.

ASSORTED UTILITIES
We also ‘inc]ixded a variety of épecia]—purpos'e utility programs. These were:

- Programs that implemented the: Kermt and Xmodem protoco]s to transfer
data to and from ‘the handhe'ld

SWK ‘program that buﬂd the special’ data format requ1red by the HP-94 for
files downloaded to its file system. =

- A program that could construct file system images for creating ROMs.

“ - Assorted :demo‘programs and doc'umentatiqn files.
NEXT . " . k ,
The next article will cover the unique features of the Tanguage and how

applications were put together. The final article will cover the corporate
history and its ‘interactions with HP.

PRIME DECOMPOSITION ON THE
HP48SK

The program listed here takes any posxtive integer as input and delivers that
number as a product of primes. The original version was my first exercise in 485X
programming and it was pleasing to end up with a reasonably efficient and elegant

program.

Page 30 ' DATAFILE V11N3

Variables used are as follows.

n -+ is the:input number:or its current residue.

pdc: is the prime decomposition.

len is the length.of the last dlsplay line. -

div. _“isithe current divisor.

pwr <18 local to subroutine REC and is the exponent of the lastfactor
ni,n2 are stores, local to.program INC.

i is a FOR counter in program PRDC.
To use the program proceed as follows
I." - "Hit the VAR menu key for PRDC,

2. See the prompt * ‘Enter number for, prlmedecomposmon ENTER a positive.
integer.
3" ‘Read the prime decomposmon trom the dlsplay ’I‘he dxsplay is complete when
~it'ends with'a full stop.
4. To re-run the program; hit the menu key agam

Examples . .
1. Keyin 223092870 hit ENTER 2. . Key.in 3195731, hit ENTER.
_See 1* ‘ o L Seel*
Cthen 192 .. then1*T4*
then 1*2*3* etcetera t,h;en 1*7‘4*1;1‘3,

then 1 *2*3*5*7*1 1%13*174 923.

Performance This program is built 1or speed to reduce the waxtmg time for very
large numbers.,.To this end no: external subroutines are called except when a
factor is found, even though this involves some repetition of code: ‘I found that
routine calling of subroutines slowed the program considerably. 1 obtain the
following processing times for three large primes;

368,507 : 13.6 secs 3,948,173 : 38 secs 31,465,099 : 111 secs

These times are about two thirds, of the times taken by an early version in:which
succesive odd numbers were used as divisors. The presented version uses divisors
which are zero (mod 2,3,5,7). If anyone can suggest other ways to streamline the
program I should be delighted to hear from them. My address is not in the
Memberpack because I re-enrolled only recently, so it is given below.

Peter Gatenby, [#030]
20, Hathaway Drive, WARWICK, CV34 5RD. (0926)497516.
P.S: 9,999,999,967‘ takes 292 minutes to display as a prime.

Notes on the listing.

PRDC. PRime DeComposer, the main program.
Sets the number display format te Standard mode:
The input number is stripped of quotes. A copy is stored in ‘0’ and it is
used to start the display, with ¥ -="
Variables 'pdc’, ‘len’ and ‘div’ are mmated. Subroutine REC is called with
1 on the stack to start the output product.
If n=0O(mod2) then TEST is called to find the exponent of 2 and add it to
the output product.
Odd numbers 3 to 11 are tested s1mllarly with the residue of n in a
‘2-step FOR loop.
The list INCS (see below) is piled on the stack by OBJ and its SIZE is
DROPped.

DATAFILE VI1N3 _ . Page 31

